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Abstract

22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion 

disorder, estimated to result mainly from de novo non-homologous meiotic recombination events 

occurring in approximately 1 in every 1,000 fetuses. The first description in the English language 

of the constellation of findings now known to be due to this chromosomal difference was made in 

the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of 

immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known 

to have a heterogeneous presentation that includes multiple additional congenital anomalies and 

later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune 

disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far 
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extending the original description of DiGeorge syndrome. Management requires a 

multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, 

psychology, interventional therapies (physical, occupational, speech, language and behavioural) 

and genetic counselling. Although common, lack of recognition of the condition and/or lack of 

familiarity with genetic testing methods, together with the wide variability of clinical presentation, 

delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, 

thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a 

model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric 

and developmental disorders, and may provide a platform to better understand these disorders 

while affording opportunities for translational strategies across the lifespan for both patients with 

22q11.2DS and those with these associated features in the general population.

The eponymous description of DiGeorge syndrome — by the late Dr Angelo DiGeorge in 

1965 — included infants with absence of the thymus (thymic aplasia) and parathyroid 

glands (hypoparathyroidism)
1
. Congenital heart disease (CHD), especially involving the 

outflow tract
2
, was later added to the list of symptoms, contributing to the theory that a 

mechanism leading to the perturbation of the third and fourth pharyngeal arches during 

embryonic development might be involved. Interestingly, a similar phenotype can be 

associated with maternal diabetes
3,4, maternal retinoic acid exposure

5
, single-gene disorders 

due to mutations in chromo-domain helicase DNA-binding protein 7 (CHD7; known as 

CHARGE syndrome)
6,7 or mutations in T-box 1 (TBX1)

8,9 and other chromosomal 

deletions, including 10p13–14 (REF. 10) and 11q23-ter
11

.

Over time, multiple aetiologies for DiGeorge syndrome were identified, beginning with a 

cytogenetically apparent 22q11.2 deletion in the early 1980s
12,13. In the early 1990s, 

fluorescence in situ hybridization (FISH) studies using probes within the commonly deleted 

region identified submicroscopic 22q11.2 deletions as the most frequent cause of DiGeorge 

syndrome
14,15 (FIG. 1). This preceded recognition that several seemingly unrelated 

conditions with overlapping phenotypic features similarly resulted from a 22q11.2 deletion, 

including: velocardiofacial syndrome
15

, conotruncal anomaly face syndrome
16,17, and 

subsets of patients with Opitz G/BBB
18

 and Cayler cardiofacial
19

 syndromes
20

. Together, 

these observations suggest that the previously described clinical diagnoses were actually one 

and the same condition with a common aetiology
21

.

Today, it is well established that 22q11.2 deletion syndrome (22q11.2DS) involves 

microdeletions (approximately 0.7–3 million base pairs in size), resulting in an 

heterogeneous clinical presentation, irrespective of deletion size, that can be associated with 

multi-organ dysfunction including cardiac and palatal abnormalities, immune and 

autoimmune differences, endocrine, genitourinary and gastrointestinal problems, and brain 

involvement as evinced by variable developmental delays, cognitive deficits and 

neuropsychiatric illnesses (such as anxiety disorders and schizophrenia). In fact, 22q11.2 

deletion is the second-most common cause of CHD and developmental delays, and the most 

common cause of syndromic palatal anomalies. However, why the 22q11.2 region is 

particularly vulnerable to deletions remains under investigation. Furthermore, as a 

consequence of mechanistic understanding, the term DiGeorge syndrome is now reserved 
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for those rare patients who share clinical symptoms with 22q11.2DS but do not harbour a 

22q11.2 deletion. Otherwise, the broad phenotypic range of symptoms — including findings 

formerly associated with DiGeorge syndrome, velocardiofacial syndrome or conotruncal 

anomaly face syndrome — is referred to using the underlying cytogenetic nomenclature: 

22q11.2DS
22,23. In this Primer, we focus on our current understanding of the 22q11.2DS 

phenotype and its genetic underpinnings.

Epidemiology

22q11.2DS is common and is the most frequent chromosomal microdeletion syndrome. The 

prevalence of this disorder has been estimated to range from 1 per 3,000 to 1 per 6,000 live 

births, based on the diagnosis of infants with major birth defects and a few population 

screening studies conducted between the early 1990s and early 2000s using FISH 

technology
24–28

. Today, most (90–95%) newly identified patients with 22q11.2DS are found 

to have de novo deletions — that is, neither parent has the 22q11.2 deletion
29

. However, 

owing to improved survival and thus higher reproductive fitness of individuals with 

22q11.2DS, the prevalence, especially of the inherited types, is expected to increase
30,31. As 

22q11.2DS is a haploinsufficient disorder, approximately half of the children of individuals 

with 22q11.2DS will have the deletion. Similarly, smaller, atypical nested deletions between 

the low copy repeats on chromosome 22 (LCR22B–LCR22D and LCR22C–LCR22D 

deletions; FIG. 2) — not typically detected by clinically available FISH probes and, 

therefore, not included in the population studies from the 1990s — are often familial and 

have reduced penetrance and/or a milder expression; thus, these patients are more likely to 

reproduce. As a consequence, the proportion of patients ascertained at The Children’s 

Hospital of Philadelphia with a LCR22B–LCR22D deletion inherited from an affected 

parent is higher (60%) than it is for patients with the typical LCR22A–LCR22D deletion 

(~10%)
32

.

Two multicentre prenatal studies published in 2012 and 2015 reported 22q11.2 deletions in 1 

per 347 and 1 per 992 fetuses, respectively, using invasive prenatal testing
33,34. Both studies 

included analyses of fetuses with or without abnormal ultrasonographic findings. The 

prevalence of the 22q11.2 deletion was approximately 1 in 100 for fetuses with major 

structural anomalies such as CHD, and was 1 per ~1,000 in seemingly anatomically normal 

fetuses (in both studies)
33,34. The true live birth incidence remains to be defined by global 

newborn screening
35,36. Notably, a small subset of neonates with 22q11.2 deletions have 

already come to attention through newborn screening for severe combined 

immunodeficiencies. 22q11.2 deletions have been identified in 1 per 169 children referred 

for clinical laboratory testing based on a suspicion of developmental disabilities
37

. 

Conversely, the 22q11.2 deletion is not found in samples of seemingly healthy individuals
37 

as penetrance to develop clinical symptoms, frequently involving multiple organ systems, is 

high
38

.

Both sexes and all racial and ethnic groups are affected
39

. However, the deletion is slightly 

more often maternal in origin
40

 and non-white patients may be diagnosed less often, perhaps 

owing to less recognizable craniofacial features in these populations
41,42.
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In the general population, 22q11.2 deletion is among the most common detectable cause of 

several conditions. A large proportion of patients with CHD have 22q11.2 deletions: 52% of 

those with interrupted aortic arch type B, 34% of those with truncus arteriosus, 16% of those 

with tetralogy of Fallot
43

 and ~5–10% of those with ventricular septal defects
44

. Other 

conditions associated with 22q11.2 deletions include velopharyngeal insufficiency (12.5–

30% of patients), cleft palate (10% of patients; cleft lip with or without cleft palate in 1–2% 

of patients)
45–47

, developmental disabilities (2–3% of patients)
48

 and schizophrenia (0.5–1% 

of patients)
49,50. By contrast, the prevalence of the 22q11.2 deletion in other conditions with 

overlapping symptoms (for example, hypoparathyroidism) is as yet unknown. Ascertainment 

strategies will have a role in defining prevalence in these conditions. 22q11.2 deletions will 

be less likely identified in samples that deliberately or inadvertently exclude individuals with 

multiple medical or psychiatric features, or intellectual disabilities (that is, the very features 

that are common in 22q11.2DS), or in samples enriched for older individuals (given the 

premature mortality of the syndrome)
51

.

Premature mortality, although lower than suggested by early reports of DiGeorge syndrome, 

remains profound at all ages. About 4% of all infants with 22q11.2DS succumb, with 

mortality figures exceeding those for infants with similar malformations
31,41. Cardiac 

defects, hypocalcaemia and airway malacia (in which cartilage defects lead to collapsibility 

of the airway) are risk factors for early death, with median age at death of 3–4 months
31,41. 

In adults, premature death occurs at median age in the 40s; causes are multiple, including 

sudden unexplained death
51

, but are not necessarily related to cardiac defects or psychotic 

illness
51

. Larger studies are needed to more fully clarify mortality risks prospectively at all 

ages
31,41,51.

Mechanisms/pathophysiology

22q11.2 deletion

The 22q11.2 region is one of the most structurally complex areas of the genome primarily 

due to several large blocks of LCRs or segmental duplications
52–54

 (FIG. 2). These LCRs 

are >96% identical, thereby making the locus vulnerable to meiotic error
55,56. The two 

largest repeats, LCR22A and LCR22D, flank the typical 3-Mb 22q11.2 region that is 

hemizygous in ~85% of patients
52,53. The 22q11.2 deletion results from nonallelic 

homologous recombination between LCR22A and LCR22D (FIG. 3). The same mechanism 

leads to the proximal (centromeric) nested 1.5-Mb (LCR22A–LCR22B) or 2-Mb (LCR22A–

LCR22C) deletions (FIG. 2). Patients with these nested deletions have major phenotypic 

features in common with patients with the typical LCR22A–LCR22D deletion
52–54

. 

However, the frequency of the nested proximal deletions accounts for only 5–10% of all 

22q11.2 deletions
52,53,57. Likewise, distal nested (LCR22B–LCR22D and LCR22C–

LCR22D) deletions lead to overlapping phenotypic features, including conotruncal cardiac 

anomalies, palatal defects and developmental differences, but the clinical features are less 

penetrant than those of the typical LCR22A–LCR22D deletion. Moreover, these deletions 

(LCR22B–LCR22D and LCR22C–LCR22D) are more frequently inherited
32,58.

Much remains to be learned about the underlying mechanisms of vulnerability to non-allelic 

homologous recombination and the de novo occurrence of the 22q11.2 deletion
40

. The 
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completeness and accuracy of the human genome reference assembly remains a major 

challenge to these research efforts
59,60.

Furthermore, 22q11.2 hemizygosity alone cannot explain the genetic mechanism of the 

highly variable phenotypic expression of 22q11.2DS. Proposed mechanisms, in addition to 

the combined effect of this multi-gene deletion
61–65

 (FIG. 2) and stochastic phenomena, 

include the sensitivity of individual genes within the 22q11.2 region to gene dosage
66,67, 

variants in genes on the intact 22q11.2 (REF. 68) and additional ‘modifying’ variants outside 

the 22q11.2 region, involving both protein-coding genes and regulatory mechanisms
67,69–73

. 

Researchers are currently evaluating common and rare single-nucleotide variants as well as 

copy number variations in genome-wide assays to explain these findings. Parental age and 

parental origin of de novo deletions seem to have no discernible phenotypic effect
40,74. 

However, inherited deletions may result in a more-severe cognitive phenotype, perhaps 

related to a combination of socioeconomic factors and heritable components contributed by 

the unaffected parent
75

.

Developmental aspects of 22q11.2DS

The mouse is the main organism used for investigating developmental aspects of the 

syndrome, as its developmental anatomy is similar to that of a human and it is possible to 

generate individual gene mutations as well as multi-gene deletions
63

. Conditional 

mutagenesis studies have also examined the timing and/or tissue-specific requirements of 

certain genes
76

 and gene dosage requirements using an allelic series approach
66,77. 

Importantly, as some phenotypes only become apparent at later ages
63

, conditional mutants 

allow bypass of the early embryonic lethality that is observed in some constitutive null 

mutants. Mouse models have also contributed greatly to understanding expression in 

developing and adult brain tissue
61,63,67,78–82

.

Much of the pathology related to typical congenital physical features associated with 

22q11.2DS can be ascribed to problems with the morphogenesis and subsequent abnormal 

function of pharyngeal arch system derivatives, including the craniofacial structures, the 

thymus, the parathyroid glands, the aortic arch and the cardiac outflow tract (FIG. 4). These 

structures receive contributions from all three classic germ layers of the embryo — the 

endoderm, mesoderm and ectoderm — together with neural crest cells derived from the 

closing neural tube.

Pharyngeal mesoderm progenitor cells give rise to craniofacial muscles and second heart 

field derivatives, including the cardiac outflow tract
64,78. The facial bones and bony palate 

are variously derived from neural crest cells or the anterior mesoderm. The parathyroid 

glands and the thymus derive from tissue interactions between the pharyngeal endoderm and 

neural crest cells
76,83. Defects in parathyroid gland development lead to hypocalcaemia, and 

defects in the developing thymus lead to immune deficiencies.

Congenital cardiac anomalies are related to defects in the arteries formed within the 

pharyngeal apparatus and in the cardiac outflow tract. As for the other affected tissues (the 

thymus, parathyroid glands and facial structures), there is a very close relationship between 

adjacent cell types. Mesoderm-derived endothelial cells and neural crest cells participate 
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directly in the formation of the pharyngeal arch arteries. Signals from the pharyngeal 

ectoderm and a direct cellular contribution from the neural crest are required for remodelling 

into the mature aortic arch. Reciprocal interactions between the second heart field and neural 

crest cells are essential for outflow tract remodelling
84–87

. The most specific cardiovascular 

defects associated with 22q11.2DS are interrupted aortic arch type B (ascribed to aplasia of 

the left fourth pharyngeal artery)
88

 and tetralogy of Fallot (related to defects in the 

development of the pulmonary infundibulum).

DNA sequences in the 22q11.2 region

There are 90 known or predicted genes present in the typical 3-Mb 22q11.2 locus that are 

hemizygously deleted — including 46 protein-coding genes and seven microRNAs 

(miRNAs), ten non-coding RNAs (including one read-through transcript) and 27 

pseudogenes (per genome build GRCh37 — a human reference sequence produced by the 

Genome Reference Consortium)
89

. A subset of genes, as provided in the University of 

California Santa Cruz (UCSC) gene prediction track, are shown in FIG. 2. The most studied 

gene of interest in the 22q11.2 deletion region is TBX1, encoding a T-box transcription 

factor. TBX1 was found to be a crucial gene in the LCR22A–LCR22B region using multiple 

mouse model approaches
90–92

. Heterozygous loss-of-function mutations of Tbx1 in the 

mouse result in partially penetrant cardiovascular, thymic and parathyroid defects that are 

reminiscent of congenital defects in 22q11.2DS
91,92. Tbx1-null mice are embryonic lethal 

with a persistent truncus arteriosus, cleft palate and absence of the thymus and parathyroid 

glands. Conditional mutagenesis of Tbx1 in the mesoderm, pharyngeal surface ectoderm or 

endoderm each leads to an overlapping subset of the abnormalities mentioned above
93,94, 

demonstrating the complexity of the tissue interactions that are required for morphogenesis 

of the pharyngeal derivatives
95

. Tbx1 expression has not been detected in neural crest cells, 

and neural crest cell-specific knockout mice have no discernible phenotype. However, neural 

crest cell patterning is affected in Tbx1-conditional mutants of both the surface ectoderm
96 

and the second heart field
97

. At the cellular level, mouse models have also been important in 

the detection of reduced proliferation and premature differentiation of progenitor cells 

expressing Tbx1 (REF. 98). Tbx1 has been implicated in brain microvascular development
99 

and may play some part in cognitive and behavioural deficits
100

.

Another gene of interest is DGCR8, encoding the DGCR8 microprocessor complex subunit 

(also known as Pasha), a double-stranded RNA-binding protein that mediates the biogenesis 

of miRNAs. This observation implicates an miRNA-related mechanism in 

22q11.2DS
81,82,101. miRNAs are small non-coding RNAs that regulate the expression of 

target genes by binding to specific sites in mRNAs for translational repression or 

degradation. In mouse models, heterozygosity of Dgcr8 results in neuronal deficits that are 

characteristic of 22q11.2DS, whereas inactivation of both alleles in neural crest cells
101 

results in heart defects
101,102. Subtle alterations in miRNA expression levels can have 

profound effects on brain development and plasticity, especially involving synapses
103,104. 

Recent studies propose that DGCR8 may play a part in modifying the expression of genes 

outside of the 22q11.2 deletion region that contribute to the neuropsychiatric and other 

phenotypes associated with 22q11.2DS
63,72,101,105.
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In addition to DGCR8-related changes in miRNAs, the high density of miRNAs in the 

22q11.2 deletion region and the accumulative insight into their function indicate that these 

functional non-coding RNAs may themselves have a role in the variable expression of 

22q11.2DS
73,105,106. These effects on expression are likely to involve not only the central 

nervous system (CNS) but also the cardiovascular system and other aspects of embryonic 

development
73,105,106.

Much evidence has been accumulated for a role of other individual 22q11.2 region protein-

coding genes in major phenotypes of 22q11.2DS. These genes include v-crk avian sarcoma 

virus CT10 oncogene homologue-like (CRKL), encoding a cytoplasmic adaptor protein to 

growth factor signalling, which maps to the LCR22B–LCR22D region
107

 and acts in a 

dosage-sensitive manner
108

. Human and mouse model data indicate that haploinsufficiency 

of CRKL could be responsible for the aetiology of cardiac anomalies in individuals with 

nested distal deletions and seems to modulate natural killer cell function
109

. Another gene, 

synaptosomal-associated protein 29 kDa (SNAP29), encodes a soluble SNARE (soluble N-

ethylmaleimide-sensitive factor attachment protein receptor) protein that is predicted to 

mediate vesicle fusion at the endoplasmic reticulum or Golgi apparatus membranes, is 

highly expressed in myelinating glial cells, is required for lamellar body formation in the 

skin, and is indirectly required for β1-integrin endocytosis and cell migration. Mutations in 

this gene have been associated with cerebral dysgenesis, neuropathy, ichthyosis and 

palmoplantar keratoderma (CEDNIK), Kousseff and Opitz G/BBB syndromes
68

. Scavenger 

receptor expressed by endothelial cells 2 protein (SREC2), encoded by SCARF2, contains 

putative epidermal growth factor-like domains in its extracellular domain, along with 

numerous positively charged residues in its intracellular domain, indicating that it may be 

involved in intracellular signalling. Homozygous or compound heterozygous mutations of 

SCARF2 underlie Van den Ende–Gupta syndrome characterized by severe contractural 

arachnodactyly and distinctive facial dysmorphism, including triangular face, as well as 

skeletal anomalies
110

.

With respect to neuropsychiatric phenotypes, there are multiple gene candidates as the 

majority of genes in the 22q11.2 deletion region are expressed in the brain
89

. COMT 
encodes catechol-O-methyltransferase, one of several enzymes that degrade catecholamines, 

including dopamine. Its activity is of particular importance in brain regions with low 

expression of the presynaptic dopamine transporter, such as the prefrontal cortex. A 

polymorphism associated with a different level of enzymatic activity (that is, the COMT 
Val/Met functional polymorphism) has been explored in 22q11.2DS with respect to 

cognition and susceptibility to schizophrenia. However, multiple studies have found no 

association of the COMT functional Val/Met common allele with schizophrenia in adults 

with 22q11.2DS
111–113

. There may be some effects of this common variant on frontal lobe 

functioning and anatomy in 22q11.2DS
111

, although results for overall intellect are 

mixed
114

. PRODH, encoding the enzyme proline dehydrogenase, which breaks down 

proline, has also been studied, in part because pathogenetic mutations in PRODH are known 

to cause type I hyperprolinaemia, which in severe forms can cause seizures and intellectual 

disability. Approximately one-third of patients with 22q11.2DS have increased levels of 

proline
115

, and several studies, although not all, have shown significant associations between 

high proline levels and various brain outcome measures in 22q11.2DS
116–119

. However, 
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studies of common variants in PRODH, as for those in COMT, in 22q11.2DS show 

contradictory results with respect to risks for intellectual disability or schizophrenia
114

. 

Zinc-finger DHHC-type-containing 8 (ZDHHC8), which encodes a palmitoyltransferase, has 

shown interesting results in studies of mutant mouse models, with effects on axonal growth 

and terminal arborization, and potential functional implications for synaptic connections and 

working memory
62

. Another 22q11.2 region candidate is RANBP1, encoding a binding 

protein for the small GTPase Ran. As a regulator of the Ran complex, this protein has 

multiple functions — including cilia formation and modulation of mitosis — that may 

contribute to the CNS and other phenotypes of 22q11.2DS
117

. Evidence for a role in 

neurogenesis places RANBP1 as a candidate for the cortical circuits implicated in disorders 

associated with 22q11.2DS, such as attention-deficit disorders, autism and 

schizophrenia
79,117.

Together with the miRNA mechanism implicated by DGCR8, and downstream effects of 

dosage changes in individual genes such as TBX1, there is increasing evidence for effects of 

the 22q11.2 deletion on, and interaction with, signalling pathways and proteins encoded by 

multiple genes outside of the 22q11.2 deletion region. For example, mitogen-activated 

protein kinase 1 (Mapk1)
120

 and hypermethylated in cancer 2 (Hic2)
121

, are of interest for 

cardiovascular and other aspects of embryonic development in mice. Loss of Tbx1 may be 

partially rescued by hemizygosity of Trp53, implicating histone methylation as a mechanism 

and suggesting potential pharmacological strategies that could compensate for 

developmental defects associated with 22q11.2 deletions
98

. Defective cortical circuitry and 

some abnormalities of signalling, for instance, in Sonic Hedgehog and CXC chemokine 

receptor 4 (Cxcr4)– CXC chemokine ligand 12 (Cxcl12; also known as Sdf1) signalling, 

which are important in interneuron migration, have been detected in the brains of mouse 

deletion models that may involve a DGCR8-mediated miRNA mechanism and have 

relevance for schizophrenia in the general population
79,122.

The plethora of signalling and other pathways that are affected by the hemizygosity of the 

22q11.2 deletion region in model systems may be valuable to help to identify modifiers of 

the 22q11.2DS phenotype in humans
63,79,114,122, perhaps particularly for genes outside of 

the 22q11.2 deletion region
123,124. These studies also promise to elucidate mechanisms 

underlying the variable phenotypic expression related to other pathogenetic copy number 

variations and to identify genes involved in the mechanism of common complex conditions, 

such as congenital cardiac and palatal anomalies, schizophrenia, Parkinson disease and 

many others, emphasizing the importance of 22q11.2DS as a model for these diseases in the 

general population.

Diagnosis, screening and prevention

Clinical manifestations

Clinical manifestations that urge for diagnostic testing vary by age. In infancy or childhood, 

typical symptoms include some combination of congenital heart defects, chronic infection, 

nasal regurgitation, hypernasal speech, hypocalcaemia, feeding difficulties, developmental 

and language delays, behavioural differences and learning disabilities
20,22,39,125. Renal 

abnormalities, laryngo-tracheo-oesophageal abnormalities, hypothyroidism, intrauterine 
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growth retardation, short stature, skeletal differences such as vertebral anomalies, club feet, 

polydactyly and scoliosis, thrombocytopenia, hearing loss, microcephaly, idiopathic seizures 

and hypotonia are less frequent (FIG. 5).

In adolescence and adulthood, behavioural abnormalities, in many instances indicative of 

(emerging) psychiatric illness, can lead to the diagnosis
125

, frequently (but not always) with 

a history of associated medical and developmental differences, such as hypocalcaemia or 

learning difficulties
29

. The presence of subtle but characteristic facial features can assist with 

identification at any age (FIG. 6). However, the opportunity for diagnosis can be missed 

when typical craniofacial and other typical congenital features such as cardiac or palatal 

defects are absent. This can be the case even when presenting with other high-prevalence 

conditions associated with 22q11.2DS, such as hypocalcaemia or psychotic illness. Major 

medical centres when less experienced with caring for patients with 22q11.2DS are not 

exempt from overlooking the 22q11.2DS diagnosis in part owing to the broad phenotypic 

variability
22,126. Some adults are only diagnosed following the birth of an affected child

29
.

The overall prevalence of considerable medical problems varies by age and ascertainment. In 

childhood, the triad of DiGeorge syndrome (although with highly variable degree of 

severity) is often ascertained: immunodeficiency (~75% of patients); congenital cardiac 

anomalies (~75% of patients); and hypocalcaemia due to hypoparathyroidism (~50% of 

patients). Other complications include palatal abnormalities (~75% of patients); manifest 

gastrointestinal, feeding and swallowing problems (~30% of patients); and genitourinary 

anomalies including renal agenesis (~30% of patients) (FIG. 5). Phenotypic expression is 

highly variable and ranges from severe life-threatening conditions to only a few less-severe 

associated features
23,114. Additional complexities include considerable interfamilial and 

intrafamilial variability
127

, even between identical twins
29

. Diagnosis on clinical grounds of 

a child with mild features requires familiarity with the condition. Dual diagnosis of other 

unrelated conditions (for example, ‘café-au-lait’ spots due to neurofibromatosis, skeletal 

disproportion due to achondroplasia or Marfan syndrome, or deep palmar and plantar 

creases due to trisomy 8 mosaicism) is possible, especially when features appear unusual, as 

22q11.2DS is common.

Cardiovascular abnormalities—Cardiovascular abnormalities become evident in the 

prenatal or neonatal period and are often the initial manifestation that leads to diagnosis
23

. 

Most abnormalities are conotruncal heart defects — defined as malformations of the outflow 

tract — and include tetralogy of Fallot (with or without pulmonary atresia), truncus 

arteriosus, interrupted aortic arch type B (between the left carotid and the left subclavian 

arteries) and ventricular septal defect. Anomalies of the aortic arch and/or of the pulmonary 

arteries may occur as isolated entities (~40%) or in association with conotruncal defects 

(~60%)
44

, contributing to the relative specificity of the cardiovascular patterns of this 

syndrome
86–88

. Aortic arch anomalies most frequently include a right-sided or a double 

aortic arch with or without aberrant subclavian arteries sometimes resulting in a vascular 

ring (~13%)
128

. Pulmonary artery anomalies include diffuse hypoplasia and discontinuity 

with or without major aorto-pulmonary collateral arteries. Approximately 10% of paediatric 

patients have aortic root dilation with unclear clinical significance
129

. Other types of CHD 

are rarer in patients with 22q11.2DS
39

. Cardiovascular defects that are less obvious, such as 
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a vascular ring, may not be diagnosed until the patient is older and presents with respiratory 

symptomatology
128

. Similarly, a ductal-dependent lesion, for instance, an interrupted aortic 

arch type B, might escape neonatal detection in the absence of an audible murmur, pass 

neonatal screening with pulse oximetry in the presence of a patent ductus arteriosus and 

might only present in extremis, which increases overall morbidity and at times mortality. 

Overall, CHD represents the main cause of mortality (~87%)
29,31 in children with 

22q11.2DS.

Immunodeficiency—Immunodeficiency affects up to 75% of paediatric patients with 

22q11.2DS owing to thymic hypoplasia and impaired T cell production
7,23,29,130. However, 

the condition is heterogeneous, ranging from patients with normal thymic development and 

normal T cell production to a small subset of patients with absent T cell 

production
22,29,131,132. Manifestations include chronic infections

130,131,133, impaired 

humoral (antibody) immune response resulting in poor response to vaccines
134,135, IgA 

deficiency
136

, allergy and asthma
5,137,138. Autoimmune diseases such as juvenile 

rheumatoid arthritis
139

, idiopathic thrombocytopenia
140

, haemolytic anaemia
141

 and thyroid 

disease
142

 are collectively common
7,22,29,130–136,138,139.

Testing is required to define the immune dysfunction. Assessment of thymic function is best 

performed by analysing peripheral blood T cells by flow cytometry. Imaging of the thymus 

is not accurate as the size, absence or presence of thymic tissue does not predict individual 

immune function, although when absent, it may lead to diagnostic studies both prenatally 

and postnatally
143

. Current recommendations support an early assessment of T cells using a 

flow cytometry panel that includes total T cells (CD3), naive T cells (usually CD4/

CD45RA), memory T cells (usually CD4 or CD45RO), B cells (CD19) and natural killer 

cells (CD3−CD56+CD16+)
36,92,134,144. The absolute counts of T cells should be analysed 

rather than percentages. T cell lymphocytopenia can also be detected in newborn screens for 

severe combined immunodeficiencies.

Palatal abnormalities—Only 11% of paediatric patients have overt cleft palate, of whom 

1–2% have cleft lip or cleft palate, and even fewer have Pierre Robin 

sequence
20,29,39,145,146. However, ~65% of patients have milder but often medically 

actionable manifestations such as: occult submucosal cleft palate, bifid uvula and 

velopharyngeal dysfunction, making the palatal diagnosis more challenging in the prenatal 

or early-neonatal period. Initial signs may only include a history of polyhydramnios (an 

excessive amount of amniotic fluid surrounding the fetus) or nasal regurgitation (that is, 

secretions, food or liquids coming through the nose with feeding and spitting up in young 

children or reflux of thin liquids into the nasal cavity in older individuals). Later, symptoms 

include abnormal nasal resonance and nasal emissions (air escape through the nasal passage 

with speech). Compensatory articulation errors are often present, which can worsen speech 

intelligibility in children with velopharyngeal dysfunction. In older children and adults, 

recurrent and chronic sinus infections may be a sign of nasopharyngeal reflux resultant from 

repeated contamination of the nasal cavity. Persistent otorrhoea with myringotomy tubes in 

place may also be due to nasopharyngeal reflux
20,22,29,39,145,147–150

. Additional craniofacial 

features that might facilitate diagnosis include asymmetric crying faces (found in 14% of 
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patients with 22q11.2DS), auricular (ear) anomalies with or without hemifacial 

microsomia
20

, craniosynostosis and characteristic facial features, such as hooded eyelids and 

a nasal dimple
151

 (FIG. 6).

Endocrine abnormalities—Hypoparathyroidism, with hypocalcaemia as a consequence, 

is found in >50–65% of patients with 22q11.2DS
152,153. Symptoms of hypocalcaemia can 

include tetany, seizures, feeding difficulty, stridor and fatigue. Transient neonatal 

hypocalcaemia or new-onset hypocalcaemia often occurs or recurs during times of stress 

(such as during illness, perioperatively or during adolescence and pregnancy)
22,152–154

. 

Additional endocrine manifestations that may also be features of 22q11.2DS include: 

hypothyroidism in children and ~20% of adults, and hyperthyroidism in children
142

 and 

~5% of adults; and growth hormone deficiency, intrauterine growth retardation (~4% of 

patients) and short stature (~15% of patients)
22,126,152–157

.

Gastrointestinal abnormalities—Considerable gastrointestinal abnormalities are found 

in ~30% of patients and can result in substantial feeding and swallowing problems that 

might necessitate tube-feeding
158

. In early childhood, gastrointestinal complications can 

present as gastro-oesophageal reflux disease, oesophageal dysmotility, nasopharyngeal 

reflux, vomiting and constipation
158

. Serious complications include oesophagitis, aspiration, 

failure to thrive, malnutrition, feeding refusal and respiratory symptomatology, such as 

choking and recurrent pneumonia
145,158. Importantly, CHD may be erroneously blamed for 

feeding difficulties. Other possible causes that should be taken into account include 

endocrine (aberrant calcium and/or thyroid hormone levels), CNS (hypotonia, 

polymicrogyria and/or cerebellar), respiratory (congestion, increased work of breathing, 

vascular ring and/or laryngeal anomaly) and gross motor (posture, oral motor coordination 

and tongue retraction) dysfunctions
158

. Rare but important complications of 22q11.2DS 

include intestinal malrotation or non-rotation, imperforate anus, Hirschsprung disease and 

oesophageal atresia or tracheo-oesophageal fistula
159

.

Genitourinary abnormalities—Approximately one-third of patients have genitourinary 

abnormalities
20,22,23,27,29,39,153,160 including: bilateral or unilateral renal agenesis

25,161,162, 

dysplastic or cystic kidneys
161,162, duplicated collecting system

161,162, 

hydronephrosis
161,162, cryptorchidism

18
, hypospadias

18
, absent uterus

163
 or inguinal 

hernia
164

.

Other—Other important somatic associations include major malformations such as: 

congenital diaphragmatic hernia (~1%), laryngeal anomalies (clefts or webs), eye 

abnormalities (sclerocornea, retinal coloboma or microphthalmia), choanal atresia, 

polymicrogyria and neural tube defects
22,165,166. Preaxial and postaxial polydactyly, 

camptodactyly, arachnodactyly and radial ray defects may be observed in the upper 

extremities, whereas 2–3 syndactyly, overlapping toes, hammer toes, postaxial polydactyly 

and club foot may be observed as lower extremity differences
167

. Anomalies are also 

observed in the cervical spine (platybasia, fusion and/or block, anomalous dens, C2 swoosh, 

increased motion) and thoracic vertebrae
168

 (butterfly vertebrae), eyelids (ptosis and hooded 

eyelids), eye (hypertelorism, tortuous retinal vessels, posterior embryotoxon and upslanting 
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palpebral fissures) and umbilical hernia (especially in non-white patients)
151

. Conditions 

that require ongoing surveillance include scoliosis (~30%); sensorineural and conductive 

hearing loss or cochlear abnormities; and rarely malignancies that include hepatoblastoma, 

Wilms tumour, renal cell carcinoma, thyroid carcinoma, leukaemia, neuroblastoma and 

melanoma
22,23,29,41,169. Treatable later-occurring conditions include unprovoked seizures 

(~15%), early-onset Parkinson disease and psychiatric illnesses (~60%)
126,153,170.

Developmental delays—Developmental and educational concerns are frequently 

reported in association with 22q11.2DS. Gross and fine motor difficulties
171

, and expressive 

language delays and speech problems dominate in infants and toddlers
172

. Children with 

22q11.2DS often demonstrate a significant delay in language onset; an early study indicated 

that ~70% of children did not speak or used only a few words or signs at 24 months of age 

or older
172

. Speech deficits should be discriminated from language disorders as the former 

often improves after velopharyngeal corrective surgery, whereas language disorders may 

occur independently of palatal findings
172

. Intelligence in children and adolescents follows a 

normal distribution that is comparable to the general population
173,174. However, mean IQ is 

only ~70, with about two-thirds of individuals falling in the IQ range of 55–85, compared 

with the reference IQ range of 85–115 (mean: 100) in the typically developing population. 

Thus, learning difficulties are very common in preschool and primary school, especially 

within the domains of mathematics
175,176 and language comprehension

177
. More-severe 

levels of intellectual disability are uncommon
178

. However, paediatric patients with 

secondary insults (for example, following cardiac arrest, prolonged hypocalcaemia or 

neonatal seizures) or primary brain malformations (for example, polymicrogyria) can have a 

poorer cognitive prognosis
68,179. Several studies indicate that cognitive development varies 

with divergent trajectories
125,180 and that the level of intellectual ability is not necessarily 

stable across the lifespan of the patient. Although IQ is generally considered to be a more or 

less stable trait in the typically developing youth, an average decline of 7 full-scale IQ points 

is observed in individuals with 22q11.2DS between 8 years and 24 years of age
181

.

Psychiatric disorders—Individuals with 22q11.2DS are at an increased risk for 

developing several psychiatric disorders; the prevalence of anxiety, attention-deficit and 

autism spectrum disorders is increased in children with 22q11.2DS
182

. Anxiety disorders are 

also profoundly increased in adults with 22q11.2DS
183

. Conversely, bipolar disorder does 

not seem to be increased, and it remains unclear if major depressive disorder shows greater 

prevalence than in the general population
182,183. As for any phenotypic feature of 

22q11.2DS, prevalence is likely to be influenced by ascertainment bias and the use of 

diverse assessment methods. Approximately 25% of individuals with 22q11.2DS are 

diagnosed with schizophrenia
112,184, and, in turn, the 22q11.2 deletion can be found in ~1 

per 100–200 individuals with schizophrenia
49

, making 22q11.2 deletion the strongest known 

molecular genetic risk factor for schizophrenia. The manifestation of schizophrenia in 

patients with 22q11.2DS does not differ from other types of schizophrenia with respect to 

prodromal stage, age of onset (although a prospective study of youths is needed), core signs 

and symptoms, treatment response and cognitive profile apart from an overall lower 

IQ
74,112,114,185–189

. In addition to standard categorical classifications, dimensional 

assessment of psychiatric and cognitive symptoms
190

 can be helpful in understanding the 
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individual’s profile of strengths and weaknesses. Education about associated psychiatric 

conditions that arise early in life (including autism spectrum, attention-deficit and anxiety 

disorders) as well as in adolescence and later (for example, psychotic illnesses and anxiety 

and mood disorders), and their early signs and symptoms, can assist the family and facilitate 

prompt access to psychiatric assessment, diagnosis and treatment
22,126.

Reproduction—With the current standard of clinical care, survival of patients with 

22q11.2DS to reproductive age is the norm
29

. Reproductive fitness for women with 

22q11.2DS, in the absence of schizophrenia or intellectual disability, is similar to that of 

their unaffected sisters and general population expectations
30

. Disproportionately reduced 

reproductive fitness of men with 22q11.2DS might contribute to an observation of excess 

maternal transmission of 22q11.2 deletions
30

. However, reproductive health and decision 

making present challenges for patients, their families and clinicians
191

. The ability to act as 

an independent parent may be affected by the complex phenotypic expression of the 

syndrome, including psychiatric and neurodevelopmental features
22,29. In addition, features 

of the syndrome may be important considerations for pregnancy planning. For example, the 

use of necessary but teratogenic medications (such as anticonvulsants, for example, 

valproate or phenytoin) can increase the risk for birth defects, and the presence of CHD in 

the expectant mother can increase the risk for pregnancy complications. As for all women 

with CHD considering pregnancy, recommendations suggest stratifying the patient’s risk by 

integrating the specific defect with the presence of additional risk factors (such as a history 

of arrhythmias, the need for systemic anticoagulation and smoking, among other 

factors)
191–193

.

Diagnostic tests

Historically, the most frequent diagnostic test used to identify a 22q11.2 deletion involved 

FISH, using a probe mapping to the LCR22A–LCR22B region
14,15(FIG. 2). Thus, nested 

deletions excluding the LCR22A–LCR22B region (that is, LCR22B–LCR22D and 

LCR22C–LCR22D deletions) can be detected using customized FISH probes from the 

LCR22B–LCR22D region or more easily using clinically available whole-region 

methodologies, such as multiplex ligation-dependent probe amplification
194,195 or single-

nucleotide polymorphism microarrays. As genome-wide microarrays detect pathogenic copy 

number variants on all chromosomes, this methodology has the added benefit of not 

introducing bias by requiring pre-selection of a specific genomic region. This may be 

especially beneficial for those patients with few clinical features or multiple atypical 

features, with less experienced health care providers
58,108.

Screening

Prenatal genetic counselling for couples in which one partner has the 22q11.2 deletion with 

an a priori 50% recurrence risk includes discussions about non-invasive screening (including 

fetal ultrasonography and echocardiography), definitive 22q11.2 deletion studies through 

chorionic villus sampling or amniocentesis, use of donor gametes, pre-implantation genetic 

diagnosis using in vitro fertilization and/or adoption. All parents of children with 22q11.2DS 

should be tested to identify mildly affected individuals and those with low-level somatic 

mosaicism. As germline mosaicism
196

 confers a recurrence risk above that of the general 
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population for those couples in which neither parent has the 22q11.2 deletion, these couples 

may choose non-invasive methodologies, such as non-invasive prenatal screening and fetal 

imaging, or definitive diagnostic testing in subsequent pregnancies. Screening for 22q11.2 

deletions can be included when invasive testing is already being considered for another 

reason, such as advanced maternal age. However, in many instances, parental anxiety is 

enough to support these investigations.

Currently, screening for the 22q11.2 deletion in individuals from the general population is 

considered when anatomic abnormalities, for example CHD, are identified on fetal 

ultrasonography, or when a fetus is considered high risk following non-invasive prenatal 

screening
197

. Invasive prenatal studies, using newly available methods such as single-

nucleotide polymorphism microarrays, can diagnose a fetus with 22q11.2DS with or without 

prenatally recognizable features. Moreover, some parents are identified with 22q11.2DS 

only following ascertainment in their fetus
29

 or through non-invasive prenatal screening in 

previously undiagnosed mothers. Long available, fetal ultrasonography can reveal several 

22q11.2DS-related findings, including CHD, cleft palate, renal anomalies, polyhydramnios, 

polydactyly, diaphragmatic hernia, club feet, tracheo-oesophageal fistula and neural tube 

defects. Should such findings lead to prenatal diagnostic testing to rule out aneuploidy (for 

example, trisomy 13, 18 and 21), the addition of 22q11.2 deletion studies as an adjunct to 

standard cytogenetics should be considered
29,198. Early diagnosis may facilitate the ability 

to prevent neonatal seizures due to hypocalcaemia
179

.

Management

Management of 22q11.2DS requires an individualized, multidisciplinary and coordinated 

care plan that takes into account the associated features of the patient. An increasing 

emphasis of many health care systems on acute, readily managed, cross-sectional, ‘one-size-

fits-all’ care in silos can be problematic. A broad flexible perspective, embracing multi-

system issues that are often chronic and require longitudinal coordinated management, in the 

context of a frequently changing clinical picture and in the context of social and/or learning 

difficulties is required to manage patients with 22q11.2DS.

The International 22q11.2DS Consortium was formed in 2006 with a goal of developing 

management parameters (BOX 1). Guidelines were proposed for children and adults with 

22q11.2DS
22,126. The consortium currently operates under the umbrella of the 22q11.2 

Society, a professional body that was established in 2013 to support basic science and 

clinical collaborations and to maintain access to contemporary guidance for health care 

providers.

Cardiovascular system

CHD is typically diagnosed prenatally or during the first days to months of life
199–202

. The 

diagnostic tools and surgical treatment are, in general, the same as for any child with 

CHD
199,200. However, 22q11.2DS is associated with longer hospital stays, greater resource 

use and more medications at discharge
201,202. Specific perioperative care should be focused 

on the prevention of hypocalcaemia, immunological depression, vasomotor instability, 

bronchospasm and airway bleeding
199,201,202. In addition to standard antimicrobial 
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prophylaxis, an antifungal agent may be considered
199

. The results of surgery are usually 

good, and operative mortality is comparable to that of other patients
199–202

. However, 

overall mortality for those with 22q11.2DS exceeds that for non-syndromic individuals with 

similar cardiac defects
31

.

Lifetime surveillance is mandatory for patients with major CHD, with many patients 

requiring cardiac catheterization and a subgroup interventional procedures and/or repeat 

cardiac surgery
126,203,204. Specific treatments relate to each cardiac defect in agreement with 

international protocols
203

. Residual valve lesions and outflow obstruction, ventricular 

function, arrhythmias, heart failure, aortic root dilatation and bacterial endocarditis should 

be monitored
126,129,203,204. Cardiac components of premature and sudden death should be 

prevented, as much as possible, in all patients
51,126,129,203,204.

Women with 22q11.2DS and CHD seeking advice about pregnancy should be evaluated 

using standard risk assessments developed for all women with CHD, given the risks for 

maternal, fetal and neonatal complications and mortality
192,193. Although severe forms of 

systemic ventricular dysfunction, cyanosis and/or pulmonary hypertension pose excessive 

risks, in most other situations, pregnancies may be managed safely from a cardiac 

perspective, given that access to specialized high-quality care during pregnancy and delivery 

is guaranteed
192,193. However, general risks relating to pregnancies in which the fetus has a 

22q11.2 deletion, such as small size and prematurity, remain increased
157

.

Immune system and autoimmune conditions

Management of immune deficiency ranges from a thymus transplant (rare) to no 

intervention
66

. Assessment of newborns allows for the identification of infants with no 

CD45RA T cells who will require a thymus transplant or a matched T cell transplant. Early 

assessment also provides guidance for live viral vaccine administration. In the setting of very 

low T cells, patients will require protective isolation and live viral vaccines should not be 

given. Patients with no CD45RA T cells require prophylaxis against pneumocystis. T cell 

counts should be reassessed at approximately 1 year of age, before administration of the 

measles, mumps and rubella vaccines and the Varivax vaccine. Data support a CD4 T cell 

count of >500 cells per µl as being the lower limit for safe vaccine 

administration
135,146,205–207

. A small percentage of patients will develop antibody 

deficiencies
208

, but the patient characteristics that predispose to this condition are not yet 

clear; periodic monitoring seems prudent. Patients with hypogammaglobulinaemia can be 

treated with immunoglobulin replacement.

Infections are often problematic across the lifespan of an individual with 22q11.2DS. Young 

children with 22q11.2DS have very frequent sinopulmonary infections, owing to immune 

deficiency, unfavourable anatomy and immune immaturity
137

. In addition, patients are at 

increased risk of allergies, and this may also contribute to sinopulmonary infections
137

. 

Infections seem to correlate with the humoral immune deficiency in adults
209

. The approach 

to recurrent infections in children and adults involves minimizing the anatomical 

contribution with ear tubes, sinus rinses, treatment of concomitant allergies and, in infants, 

feeding practices that discourage pooling of formula in the pharynx. Prophylactic antibiotics 

represent an approach that can provide some relief, and immunoglobulin replacement should 
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be offered to those with demonstrated humoral defects. Patients with autoimmune diseases 

are typically managed using strategies that are appropriate for patients with autoimmune 

diseases without 22q11.2DS, but immune suppression should be minimized
210

.

Palatal disorders

Overt cleft palate and cleft lip or cleft palate in patients with 22q11.2DS are addressed 

routinely in very early childhood using treatments that are, in general, the same as for those 

of any child with clefts
211

. Velopharyngeal dysfunction can lead to maladaptive articulation 

patterns with unintelligible speech, resulting in frustration that affects psychosocial 

development. This often causes parental distress and an eagerness to proceed with surgical 

interventions. The goals of surgery, generally at approximately 4–6 years of age, include 

normal speech production, effective communication and improved quality of life (QOL). An 

individualized treatment plan to optimize speech outcomes while minimizing perioperative 

and postoperative complications requires an initial assessment of speech and language 

status.

Too little speech may preclude obtaining an adequate sample for surgical decision making, 

thus pre-surgical speech therapy with total communication strategies is recommended 

beginning in infancy. In addition, velopharyngeal imaging using nasendoscopy or multi-view 

videoflouroscopy is typically required to determine the pattern, motion and degree of 

velopharyngeal closure before making a surgical plan. Additional considerations include 

airway size and preoperative co-morbid conditions, including visibly enlarged tonsils or 

adenoids, obstructive sleep apnoea
212

, asthma, cervical spine instability, carotid 

displacement, and cardiac, endocrine, haematological and feeding problems; ascertainment 

of developmental, emotional and behavioural status is also important. Patients also benefit 

from perioperative calcium monitoring and preoperative and postoperative sleep 

studies
150,212.

Endocrine system

Adequate treatment of hypocalcaemia and thyroid dysfunction is essential
22,126,154. Special 

attention to calcium levels at times of biological stress (for example, peri-operatively or 

during puberty, pregnancy or delivery), and vigilance in the neonatal period to prevent 

seizures is crucial
22,152,179. Growth hormone deficiency responds well to therapy

154
. 

Specific growth curves are available
156

.

Central nervous system

CNS involvement is common in 22q11.2DS. In infancy, neonatal seizures, developmental 

delays, language impairment and autism spectrum disorder each require their own 

management strategies. These include infant stimulation, total communication strategies 

beginning in infancy and specialized educational interventions. Neuromotor deficits, 

especially in the domains of balance and coordination, occur early and require 

remediation
171,213,214. The diagnosis of autism spectrum disorder may be relevant to clarify 

limitations in social interaction and communication and the presence of repetitive 

behaviours
215

. Awareness of these and other developmental deficits is crucial to avoid 

situations in which the environmental expectations exceed the abilities of the child.

McDonald-McGinn et al. Page 16

Nat Rev Dis Primers. Author manuscript; available in PMC 2016 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Standard pharmacological and non-pharmacological treatments for attention-deficit, anxiety 

and other mood disorders are effective
22,126,216–218

, as are standard treatments for major 

psychotic illnesses such as schizophrenia
126

. Attention to increased risk of seizures and 

movement disorders is important when considering medication choices, and adjunctive or 

prophylactic treatments may be necessary
126,189. Standard treatments for epilepsy and 

Parkinson disease seem to be effective
126

. In light of the prominence of CNS expression, 

targeted pro-active awareness and management of these aspects are required for every 

individual with 22q11.2DS, starting early in life. The available treatment strategies, both 

pharmacological and non-pharmacological, for paediatric and later-onset neuropsychiatric 

disorders are effective and should be applied in accordance with general clinical practice 

guidelines for the associated conditions
22,126.

Quality of life

The challenges of intellectual deficits, psychiatric illnesses and other somatic consequences 

of 22q11.2DS can have far-reaching effects on daily functioning and QOL of patients, which 

can result in high burden for the family. Providing adequate support to help optimize 

functioning and QOL of the patient is essential
29

. As the well-being of the affected 

individual is closely related to the well-being of the caregivers, it is also important to address 

caregivers’ stress and provide support when necessary across the lifespan
219,220. As 

disability-related family problems increase with the age of the patient, a growing need for 

counselling, especially for aspects of parenting and discipline, and for treatment can be 

presumed
221

.

QOL among children with 22q11.2DS is often characterized by struggles in cognitive, social 

and emotional domains
222

 as compared with healthy peers and those with other chronic 

conditions, such as diabetes, asthma, CHD and cancer. Moreover, children and adolescents 

with 22q11.2DS and repaired CHD have more hospitalizations, worse exercise performance 

and lower reported QOL ratings than seemingly healthy peers
201,202,223. Insofar as 

immunodeficiency contributes to infection and hospitalization, more-severe immune 

compromise would be associated with reduced QOL, however, no studies have yet been 

performed. The complexity of multiple affected systems in individuals with 22q11.2DS may 

have a compounding effect on QOL.

With respect to neurocognitive abilities, determining weaknesses as well as relative strengths 

and competencies can facilitate educational and vocational planning and optimize QOL and 

functional outcomes. Depending on overall cognitive capacities (ranging from average to 

intellectual disability), students will follow either typical school placements with educational 

support, often requiring an individualized educational plan, or special education with 

individualized educational plans. Given that the cognitive phenotype can change over 

time
181

, the intellectual abilities of all patients (regardless of age) should be followed and re-

evaluated at regular intervals. Furthermore, continuous adaptation of expectations and 

learning environments is necessary to provide a balance between individual capacities and 

demands of the environment
125

 (FIG. 7). In this way, guidance can be implemented at home, 

school and work, whereas unnecessary stress can be averted. Importantly, cognitive decline 

during childhood may be a risk indicator for schizophrenia
181

, but may also represent a 
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complicating factor in the struggle to maintain the balance between competencies and 

environmental demands.

Functional impairment in adulthood is primarily mediated by more-severe intellectual 

disabilities and psychiatric phenotypes such as schizophrenia
205

. Functional impairment 

appears unrelated to a history of treated CHD, or mood or anxiety disorders
205

. Relative 

strengths in activities of daily living and employment are apparent
29,205, and support may 

help to compensate for relative weaknesses in social and communication abilities
29

. 

Individuals tend to have deficits in executive functioning and mental arithmetic
224

, but 

relatively strong rote memory
224,225, so may be well suited to perform structured tasks. 

Receptive and expressive communication may be more effective using indirect methods (that 

is, with a computer or smartphone), as compared with direct verbal communication. Hands-

on training, demonstrations and written instructions may help
205

.

Adult patients living into middle-age present challenges for long-term care, mainly 

shouldered by their ageing parents, which may cause profound financial, physical and 

emotional stress
29,219. Professional agencies, including social work and vocational training, 

can help
47

. Spouses, siblings and other relatives may also have important roles
29,126. Prompt 

recognition and treatment of psychiatric disorders will maximize functioning and improve 

QOL, whereas the integration of medical, educational, behavioural and environmental 

treatment methods and approaches will be necessary to enhance QOL for individuals with 

22q11.2DS and their families.

Outlook

Understanding the pathophysiology

The discovery that the 22q11.2 deletion is the genetic cause of what was previously called 

DiGeorge syndrome led to the identification of the main dosage-sensitive genes (for 

example, TBX1 and CRKL, among other genes) underlying the main developmental 

anomalies. However, all phenotypic features of the syndrome are not fully penetrant in any 

individual patient, and the clinical presentation is remarkably variable. This variability 

remains largely unexplained. It may be that the expression of certain features is more-

directly related to individual gene dosage effects, as identified for TBX1 and CRKL with 

respect to cardiac development. Other features, such as CNS-related pathogenesis, may 

require the effects of multigenic reduced gene dosage within the 22q11.2 deletion interacting 

with permissive variants in modifier genes elsewhere in the genome.

Current research aims to unravel potential pathophysiological roles of allelic variation of 

genes within the 22q11.2 region of the non-deleted chromosome, modifier genes that reside 

outside of the deleted region, somatic mutations, epigenetic phenomena and individual 

characteristics or environmental factors
226

. Polygenic ‘background’ effects are already 

demonstrated in mouse models that show highly variable expression of key phenotypes 

when the same deletion or individual mutations of deletion region genes are engineered in 

different mouse strains
92

. The phenotypical variability, even within the same mouse strain, 

as in monozygotic twins with 22q11.2DS
29

, is also consistent with the role of stochastic 

effects, and potentially epigenetic and other mechanisms. It can be anticipated that ongoing 
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genome-wide association, whole-genome sequencing and expression studies will identify 

genetic modifiers and mechanisms
73,74,105,124,227,228.

Features that are easily visible in mouse embryos or human fetuses have been the main focus 

of research thus far. Advances in technologies, and interest, are gradually shifting focus to 

functional changes — that is, studies of neurobehaviour in humans and mouse models. 

22q11.2DS is an interesting model to investigate possible genes, genetic mechanisms and 

central neurotransmitter systems associated with the 22q11.2 region that may contribute to 

the observed cognitive decline in childhood. Genetically engineered mouse models will 

continue to provide the foundation for mechanistic analysis to facilitate understanding of the 

pathogenesis of each of the associated syndromic features and accordingly provide promise 

for improving diagnosis and treatment
79

. The advantages of studying mouse models of 

22q11.2DS, particularly for changes in cortical circuitry that underlie neurobehavioural 

phenotypes, have recently been summarized
79

. Large-scale prospective studies of key 

interacting factors will be needed to understand the complex interplay between cognitive, 

mood, psychotic, neuromotor and other neurological symptoms that contribute to the 

variable neuropsychiatric phenotypes associated with 22q11.2DS.

An outstanding question is why 22q11.2DS is the most frequent genomic disorder. Owing to 

the complexity of LCRs
229

, the rearrangement breakpoints and sequences driving non-allelic 

homologous recombination remain uncharted. Even the latest human genome assembly 

(GRCh38) contains gaps in the LCRs of the 22q11.2 region
59,60. A more definitive map may 

help to pinpoint underlying variability in the population. Understanding this variability may 

not only be important for evaluating the reasons for the high prevalence of 22q11.2DS but 

may also stratify individuals at risk for de novo 22q11.2 deletions. In addition, variability of 

LCRs might explain part of the phenotypic variability. Copy number variation within the 

LCR subunits, the precise position of the LCR-mediated rearrangements and the broader 

structural variation among patients may directly affect the expression of the 90 genes and/or 

pseudogenes located within the LCRs and/or indirectly affect expression of flanking genes.

Importantly, if mutations that lead to other autosomal recessive disorders are present in the 

non-deleted allele, they can be unmasked owing to the deletion of the other 22q11.2 allele 

(for example, Bernard–Soulier and CEDNIK syndromes)
68,230 (FIG. 8).

22q11.2DS as a model system

22q11.2DS has been shown to be a good model system over the past 25 years for human 

microdeletions and their related genomic disorders or syndromes. This work has helped to 

demonstrate how microdeletions could explain many syndromes with known, but extremely 

rare, microscopically visible deletions, similar to Williams–Beuren syndrome (7q11.23 

deletion), WAGR syndrome (Wilms’ tumour, aniridia, genitourinary malformation and 

retardation; 11p13 deletion) and Wolf–Hirschhorn syndrome (4p16.3 deletion). In addition, 

22q11.2DS has demonstrated how chromosomally engineered and subsequently transgenic 

mice could be used to identify a causative gene (or genes) in copy number variation 

disorders.
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The combination of human genetics with developmental analysis of mouse models also 

demonstrated how phenotypic overlap at the clinical level could be recapitulated in specific 

anatomical defects at the embryonic level (for example, Tbx1-mutant and Chd7-mutant 

mice, and 22q11.2DS and CHARGE syndrome in humans, respectively). More-detailed 

analysis of the role of Tbx1 in mice has been fundamental in expanding our knowledge of 

the role of the second heart field lineage in congenital heart malformations and has informed 

other areas, such as thymic development (including the induction of thymic cells from stem 

cells).

22q11.2DS is also a very strong genetic cause of psychiatric abnormalities, in particular 

schizophrenia, and thus serves as a good model of this complex condition to study the 

trajectory from genetic risk to psychiatric expression
231

. Patients with 22q11.2DS with 

psychiatric disorders may have no formal intellectual disability. The association with a 

defined genetic cause, as for complex anatomic anomalies such as cardiac defects, has 

facilitated human and animal studies of neurodevelopment and neurofunctional changes to 

schizophrenia and other psychotic disorders.

Thus, 22q11.2DS is a model for understanding common congenital anomalies, rare and 

common psychiatric and other medical conditions and developmental differences, and may 

provide insight into translational strategies across the lifespan, not only for patients with 

22q11.2DS but also for those with these individual conditions in the general population.

Management

Animal models provide promise in the development of pharmaceutical agents to treat 

22q11.2DS-related phenotypes. Simple model organisms (for example, Caenorhabditis 
elegans, Drosophila and zebrafish) are particularly suited to high-throughput screening of 

chemical libraries for potential drug development
89

. More data are needed on treatment 

response and caveats in 22q11.2DS for all associated conditions and treatment 

modalities
189,201,202. Importantly, current cohorts of patients with 22q11.2DS have become 

sufficiently large to begin examining the effect of current and novel treatment strategies in 

adequately powered clinical trials.

Prevention, diagnosis and screening

Lack of recognition of the condition and/or lack of familiarity with genetic testing methods, 

together with the wide variability of expression, delays diagnosis both prenatally and 

postnatally. Early diagnosis offers multiple advantages and could improve preparedness and 

outcomes while potentially reducing medical, emotional and fiscal (and therefore societal) 

costs.

Although helpful in the initial recognition of the syndrome, relying on congenital features as 

‘characteristic’ of 22q11.2DS would now be considered inadequate to capture the variable 

expression of the 22q11.2 deletion across the lifespan. Old names for the syndrome 

perpetuate the myth that a patient ‘must’ have one or more of these features, promoting the 

often lengthy diagnostic odyssey endured by many patients, families and clinicians. Until 

there is completely unbiased ascertainment — that is, identification of the 22q11.2 deletion 

by screening all live births — with lifetime follow-up of emerging features, all prevalence 
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figures for associated features must be assumed to be only gross estimates, probably biased 

to more-severe expression
22,126.

Non-invasive prenatal screening for fetal aneuploidy detection is an increasingly offered 

service, with the ability to detect smaller fetal (and sometimes maternal) segmental 

aneuploidies, such as 22q11.2 deletions
197,232. Further technological advances are likely to 

improve accuracy. Prenatal detection of 22q11.2DS will enable future parents to make 

informed choices, prepare for obstetrical and neonatal management, and provide the 

opportunity to improve survival and outcome
157,179. The unbiased detection of 22q11.2DS 

will establish true incidence, will enable longitudinal medical course surveillance from the 

prenatal period and will allow for earlier intervention.

Several technologies have been tested for sensitivity and specificity in the setting of newborn 

screening
233–235

. All rely on DNA detection and are therefore both robust yet sensitive to 

settings where DNA may be limited or degraded (such as when there is low white blood cell 

count or improper sample storage). Strategies range from genome-wide deletion, duplication 

and rearrangement approaches to specific detection of the 22q11.2 deletion. All have shown 

technical feasibility. The larger hurdle will be to establish the political will to implement one 

or more strategies in a pilot approach in a real-life setting. The usual test for application of a 

new screening test is demonstration that early detection improves outcomes. Efforts are 

underway to establish this connection and a powerful grass roots movement has supported 

the newborn screening initiative.
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Box 1

General principles to manage 22q11.2 deletion syndrome

• Early diagnosis and effective treatment of each condition improves general 

outcome

• Attention to the multi-system nature of 22q11.2 deletion syndrome is key

• Goals to promote an optimal quality of life and functioning for the individual 

patient

• Appreciation of the level of the individual’s neurocognitive abilities when 

providing advice, regardless of chronological age

• Family members and caregivers to be included, as much as possible, in 

developing a health care plan for patients of all ages as allies in maximizing the 

understanding of the illness and recommended treatments and follow-up

• Relatives and social service agents can be instrumental in implementing health 

care recommendations for extended family members, in particular children, 

when the 22q11.2 deletion is familial

• Times of transition (for example, from paediatric to adult care) require special 

attention to prevent gaps in care

• The effect of treatment for one condition may positively or negatively impact 

another condition

• Patients benefit from a single invested health care manager or team who will 

coordinate care and facilitate communication between providers
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Figure 1. Chromosome 22 idiogram
Cytogenetic representation of chromosome 22 showing the short (p) and long (q) arms along 

with the centromere, which functions to separate both arms. Chromosome 22 is an 

acrocentric chromosome, as indicated by the two horizontal lines in the p arm. The 22q11.2 

deletion occurs on the long arm of one of the two chromosomes, depicted by dashed lines in 

the 22q11.2 band. The position of the two low copy repeats (LCRs) on 22q11.2 (LCR22A 

and LCR22D), which flank the typical 3-Mb deletion, are indicated.
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Figure 2. Low copy repeats and genes within the 22q11.2 deletion
Schematic representation of the 3-Mb 22q11.2 region that is commonly deleted in 22q11.2 

deletion syndrome, including the four low copy repeats (LCR22s) that span this region 

(LCR22A, LCR22B, LCR22C and LCR22D). Common commercial probes for fluorescence 

in situ hybridization (FISH) are indicated (N25 and TUPLE). The protein-coding and 

selected non-coding (*) genes are indicated with respect to their relative position along 

chromosome 22 (Chr22). T-box 1 (TBX1; green box) is highlighted as the most widely 

studied gene within the 22q11.2 region. Mutations in this gene have resulted in conotruncal 

cardiac anomalies in animal models and humans. Known human disease-causing genes that 

map to the region are indicated in grey boxes. These include proline dehydrogenase 1 

(PRODH; associated with type I hyperprolinaemia), solute carrier family 25 member 1 

(SLC25A1; encoding the tricarboxylate transport protein and is associated with combined 

D-2- and L-2-hydroxyglutaric aciduria), platelet glycoprotein Ib β-polypeptide (GP1BB; 

associated with Bernard–Soulier syndrome), scavenger receptor class F member 2 

(SCARF2; associated with Van den Ende–Gupta syndrome), synaptosomal-associated 

protein 29 kDa (SNAP29; associated with cerebral dysgenesis, neuropathy, ichthyosis and 

palmoplantar keratoderma (CEDNIK) syndrome), and leucine-zipper-like transcription 

regulator 1 (LZTR1; associated with schwannomatosis 2). Further details on the location of 

non-coding RNAs and pseudogenes in the 22q11.2 region may be found in Guna et al.
89

. 

Common 22q11.2 deletions are shown, with the typical 3-Mb deletion flanked by LCR22A 

and LCR22D (LCR22A– LCR22D) on top and the nested deletions, with their respective 

deletion sizes indicated below. Each of the deletions portrayed is flanked by a particular 

LCR22. Those rare deletions not mediated by LCRs are not shown. AIF3M, apoptosis-

inducing factor mitochondrion-associated 3; ARVCF, armadillo repeat gene deleted in 

velocardiofacial syndrome; CDC45, cell division cycle 45; Cen, centromere; CLDN5, 

claudin 5; CLTCL1, clathrin heavy chain-like 1; COMT, catechol-O-methyltransferase; 
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CRKL, v-crk avian sarcoma virus CT10 oncogene homologue-like; DGCR, DiGeorge 

syndrome critical region; GNB1L, guanine nucleotide-binding protein (G protein), β-

polypeptide 1-like; GSC2, goosecoid homeobox 2; HIC2, hypermethylated in cancer 2; 

HIRA, histone cell cycle regulator; KLHL22, kelch-like family member 22; LINC00896, 

long intergenic non-protein-coding RNA 896; LOC101927859, serine/arginine repetitive 

matrix protein 2-like; CCDC188, coiled-coil domain-containing 188; LRRC74B, leucine-

rich repeat-containing 74B; MED15, mediator complex subunit 15; mir, microRNA; 

MRPL40, mitochondrial ribosomal protein L40; P2RX6, purinergic receptor P2X ligand-

gated ion channel 6; PI4KA, phosphatidylinositol 4-kinase catalytic-α; RANBP1, Ran-

binding protein 1; RTN4R, reticulon 4 receptor; SEPT7, septin 7; SERPIND1, serpin 

peptidase inhibitor clade D (heparin co-factor) member 1; TANGO2, transport and golgi 

organization 2 homologue; THAP7, THAP domain-containing 7; TRMT2A, tRNA 

methyltransferase 2 homologue A; TSSK2, testis-specific serine kinase 2; TXNRD2, 

thioredoxin reductase 2; UFD1L, ubiquitin fusion degradation 1-like; USP41, ubiquitin-

specific peptidase 41; ZDHHC8, zinc-finger DHHC-type-containing 8; ZNF74, zinc-finger 

protein 74.
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Figure 3. 22q11.2 non-allelic homologous recombination
Diagram of two different types of meiotic non-allelic homologous recombination events that 

can occur between low copy repeats on chromosome 22 (LCR22s). Rearrangements between 

LCR22A and LCR22D are indicated (A and D) on each allele (blue versus yellow). 

Interchromosomal events (left) occur between paralogous LCR22s (A and D) in two 

different alleles owing to >99% sequence identity of direct repeats (‘X’ shows the crossover 

of the two chromosomes). The hybrid LCR22 is shown as half yellow and half blue. This 

process results in a duplication or deletion of intervening genes in resulting gametes. 

Intrachromosomal recombination events (right) result from crossing over (indicated by ‘X’) 

within one allele, resulting in a deletion (left) or a ring chromosome (right); the ring 

chromosome is not viable.
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Figure 4. Development of the cardiovascular and pharyngeal structures affected in 22q11.2 
deletion syndrome
a | The schematic ventral view of an embryonic day 7.5 (E7.5) mouse embryo shows the 

relationship of the cardiac crescent to the head folds and also depicts the distinct cellular 

fields termed the first heart field and the second heart field (SHF). Within the second heart 

field, the anterior segment (aSHF) contributes to the outflow tract (OFT) and the right 

ventricle (RV) of the heart, whereas the posterior segment (pSHF) contributes to the inflow 

of the heart. b | Cardiac neural crest cells (NCCs) delaminate from the hindbrain and migrate 

ventrolaterally to populate the pharyngeal arches. The T-box transcription factor TBX1 is 

required within the pharyngeal surface ectoderm to regulate as yet unknown signalling 

pathways, which pattern the cardiac NCCs (dashed arrow). The pharyngeal endoderm and 

cardiac NCCs interact in the formation of the thymus and parathyroid glands. c | Lateral 

view of an E10.5 mouse embryo. The cardiac neural crest arises from the neural tube at the 

level between the otic placode and somite three, and migrates ventrolaterally to populate the 

pharyngeal arches, interacting with the core mesoderm and ultimately contributing the 

smooth muscle cells to the remodelling arch arteries. The caudal stream enters the OFT. d | 

Schematic presentation of the cell lineage that contributes to the OFT of the heart at 

approximately E10.5. (1) Cells derived from the aSHF enter the OFT where they contribute 
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to the myocardium and endocardium. (2) These cells interact with cardiac NCCs that 

migrate in from the pharyngeal arch region. Signals to the cardiac neural crest are also 

received from the pharyngeal epithelium. Disruption to these cellular contributions or 

interactions can result in a common arterial trunk, alignment defects or ventricular septation 

defects.
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Figure 5. Organ and system involvement in 22q11.2 deletion syndrome
22q11.2 deletion syndrome leads to significant morbidity (and some premature mortality), 

with frequent multi-organ system involvement, such as cardiac and palatal abnormalities, 

immune differences, endocrine and gastrointestinal problems, and later-onset conditions 

across the lifespan including variable cognitive deficits and psychiatric illness that is 

attributable to functional brain changes. Less-frequent manifestations, when present, 

contribute to substantial morbidity (examples include: idiopathic seizures; polymicrogyria; 

sclerocornea; coloboma; deafness; choanal atresia; laryngeal cleft or web; tracheo-
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oesophageal fistula; hypothyroidism or hyperthyroidism; juvenile rheumatoid arthritis; 

idiopathic thrombocytopenia; autoimmune haemolytic anaemia; craniosynostosis; scoliosis; 

intestinal malrotation; Hirschsprung disease; and imperforate anus). Minor malformations 

generally confer little indisposition but may enhance ascertainment. These generally include: 

mild dysmorphic craniofacial features, such as hooded eyelids, auricular anomalies, nasal 

differences including a dimple or crease, and asymmetric crying facies; and, cervical and 

thoracic vertebral anomalies or butterfly vertebrae, arachnodactyly, camptodactyly, 2–3 toe 

syndactyly and polydactyly (preaxial and postaxial of the hands and postaxial of the feet).
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Figure 6. Craniofacial features associated with 22q11.2 deletion syndrome
Patients with 22q11.2 deletion syndrome (22q11.2DS), shown here from infancy through to 

adulthood, demonstrate variability of associated craniofacial features — most with few 

recognizable dysmorphia (part a). A person with 22q11.2DS has a 50% recurrence risk with 

each pregnancy for this microdeletion syndrome, but some adults only come to attention 

following the diagnosis in a child with associated features, as in these unrelated nuclear 

families (daughter and father (part b) and son and mother (part c)). When viewed 

individually, some craniofacial features provide important clues to the diagnosis, for 
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example, microstomia and asymmetric crying facies (part d), and malar flatness and 

micrognathia (part e). External eye findings (part f) may include upslanting palpebral 

fissures and hypertelorism (1), hooded eyelids and/or ptosis (2) and mild epicanthal folds 

(3). Nasal features (part g) may include a bulbous nasal tip with hypoplastic alae nasi (4) 

often with a nasal dimple or crease with or without a faint haemangioma (5). Auricular 

differences (part h) frequently include thick overfolded, squared-off and crumpled helices, 

microtic, cupped or posteriorly rotated ears, attached lobes and preauricular pits or tags 

(arrows).
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Figure 7. Developmental trajectory
As the child with 22q11.2 deletion syndrome (22q11.2DS) ages, the discrepancy between 

developmental level (based on chronological age) and environmental demands widens owing 

to associated neurocognitive and behavioural developmental deficits. Note that IQ decline 

observed in 22q11.2DS may not only be due to a relative but also to an absolute decline in 

cognitive abilities.
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Figure 8. Associated autosomal recessive conditions on 22q11.2
A deletion on 22q11.2 in combination with a mutation in a single gene on the other allele 

can unmask an autosomal recessive condition, for example, Bernard–Souilier syndrome 

(platelet glycoprotein Ib β-polypeptide (GP1BB)) and cerebral dysgenesis, neuropathy, 

ichthyosis and palmoplantar keratoderma (CEDNIK) syndrome (synaptosomal-associated 

protein 29 kDa (SNAP29)).
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